Life Science

Chapter 3 Protein Synthesis

RNA – Ribonucleic Acid

- Structure of RNA
 - Nucleotide made up of Phosphate group, Ribose Sugar and Nitrogenous base
 - Nitrogenous bases: Adenine, Guanine, Uracil and Cytosine
 A-U and G-C
- Three major difference between DNA and RNA
 - i. RNA is a single strand, DNA is a double helix
 - ii. RNA there is no thymine. It's replaced by Uracil
 - iii. RNA has Ribose and DNA has Deoxyribose sugar

Protein synthesis

&

Protein Synthesis – 2 Parts

- Transcription: process by which a molecule of DNA is copied into a complimentary strand of mRNA
 - a. An enzyme splits one a portion of the DNA (the valuable "master plans") molecule
 - b. Another enzyme transcribes the DNA and takes RNA nucleotides and synthesizes a strand of mRNA (the usable "Blue prints")
 - c. mRNA moves out of the nucleus into the rough ER to a ribosome

mRNA made inside the nucleus

Protein Synthesis – 2 Parts

- Translation: Process of decoding the mRNA and attaching amino acids together to create a specific protein.
 - a. Proteins and Amino Acids
 - Three nucleotides on the mRNA make up a "codon"
 - Each codon specifies a particular amino acid
 - There are 20 different amino acids
 - There are 64 different combinations of A, U, G, and C that a codon could have (4x4x4)
 - There are three "stop" codons acting as a "period" in a sentence
 - The "sentence" is that strip of mRNA produced by the section of exposed DNA

Protein Synthesis – 2 Parts

- Details of Translation:
- a ribosome (made up of a protein and rRNA) slides down the piece of mRNA, it's a "one-way" movement down the mRNA so there can only be one way to translate the mRNA code
- enzymes bring individual tRNA molecules to the ribosomes
 - i. tRNA is shaped like an "Upside down Cross"
 - 1. the bottom has three nucleotides exposed (the anti codon)
 - 2. the top has a site for the attachment of a specific amino acid
 - 3. 61 different tRNA's (one for each possible codon)
 - ii. the tRNA is lined up in a special order depending on the code of the mRNA
 - iii. as the tRNAs are lined up, the attached amino acid is removed and attached to the continuing chain of amino acids
 - iv. when the ribosome reaches a "stop" codon, the collection of amino acids is complete and a specific type of protein has been formed

Codon to Amino Acid

- Codon : Amino Acid
- UGG : Trytophan
- UGA : "Stop"
- ACC : Threonine
- CCU : Proline

	Second Base	in Code Word	
A	G	U	C
Lysine	Arginine	Isoleucine	Threonine
Lysine	Arginine	Methionine	Threenine
Asporogine	Serine	Isoleucine	Threonine
Asparagine	Serine	Isoleucine	Threonine
Glutamic Acid	Glycine	Valine	Alonine
Glutamic Acid	Glycine	Valine	Alanine
Aspartic Acid	Glycine	Valine	Alanine
Aspartic Acid	Glycine	Valine	Alonine
"Stop" codon	"Stop" codon	Leucine	Serine
"Stop" codon	Trytophan	Leucine	Serine
Tyrosine	Cysteine	Phenylalanine	Serine
Tyrosine	Cysteine	Phenylalanine	Serine
Glutamine	Arginine	Leucine	Proline
Glutamine	Arginine	Leucine	Proline
Histidine	Arginine	Leucine	Proline
Histidine	Arginine	Leucine	Proline

How to determine which codon codes for which one of the 20 different amino acids:

1. Find the 1st base on the left side of the table.

Rose in Code Wo

the second

- 2. The middle base is then located on the top of the table. Where they intersect determines the 4 possible outcomes.
- 3. Find the 3rd base on the right side of the table, follow that row to the left until they all intersect. This identifies the amino acid or a "stop" codon.

10/4/2015

C Ya.... No mas!!